
PreferenceSPARQL for Querying the Semantic Web
Klaus Emathinger and Stefan Schödel and Markus Endres1

Abstract. As global information production rises steadily, we must
investigate new methods of information management. An especially
pressing issue therein lies with the increasing discrepancy between
production and filter capabilities. Users rightfully expect correct, re-
liable and relevant answers to their queries. PreferenceSQL can in-
tuitively address these requirements. Meanwhile, the Semantic Web
provides a comprehensive collection of standard technologies to re-
alize a machine-readable Web of Data that can help users to retrieve
relevant information. By lifting preferences from SQL to SPARQL,
the query language of the Semantic Web, we get a new composite
called ‘PreferenceSPARQL’. With this composite, we seek to harness
the relevancy benefits derived from preferences as well as the inter-
operability advantages of the Semantic Web. This work provides new
implementation details for preferences in Apache Jena, specifically
its SPARQL engine ARQ and contributes benchmarks that confirm
the practicability of the approach.

1 Introduction

The primary audience of the World Wide Web is human users. The
data is unstructured, mostly represented as free-form text, and the
text organization principles are weak with different kinds of infor-
mation co-existing. These factors make it unsuitable to machine con-
sumption [21].

Even in the domain of Web services and service-oriented archi-
tectures, much human intervention is required to connect one service
to another. Be it the interpretation of informal service descriptors,
the harmonization of incompatible data schemata or the negotiation
of communication protocols [22]. Today’s computer systems typi-
cally lack the required common-sense reasoning as well as general
or business-specific background knowledge [22].

Instead of just serving as a passive display of information, the vi-
sion of the Semantic Web is an intelligent system capable of assist-
ing humans in the creation of meaning [23]. Information is modelled,
manipulated and queried at the conceptual level [21].

One of the building blocks for the Semantic Web is the Resource
Description Framework (RDF), a data model and language for de-
scribing web resources. The SPARQL Protocol and RDF Query Lan-
guage (SPARQL) is the de facto standard for querying RDF data.
SPARQL performs graph pattern matching, i.e., it provides capabili-
ties for matching required or optional graph patterns along with their
conjunctions and disjunctions. It realizes the filtering of information
via hard constraints. Either a binding satisfies a filter expression and
is added to the output or it does not, leading to the binding’s exclu-
sion from the output. From a machine’s perspective, such behaviour
is desired. From a human perspective, it is inadequate. A user expects

1 University of Passau, Germany, email: {klaus.emathinger@uni-passau.de,
stefan.schoedel@gmx.de, markus.endres@uni-passau.de

a reasonable amount of results to be delivered. Hence, the query is
manually adjusted until a reasonable result set is returned.

To facilitate an efficient and effective exchange of information,
the filtering of such information must also evolve. If relevant data
is sparse, an intelligent filter will relax its constraints to present the
next best options. If relevant data is abundant, only the best results as
inferred by some implicit ranking should be returned.

Preferences are a solution for intelligent filtering. Users state their
preferences by adding soft constraints which more faithfully reflect
the underlying intention of the user [11, 18]. Preferences can be in-
terpreted as personalized wishes in the form of ’I like A more than B’
that are formalized by the strict partial order preference model [12].
Built upon this theoretical framework, PreferenceSQL2 [14] extends
the SQL standard introducing preferences to relational databases.
Following a constructor-based approach, preference queries can be
formulated intuitively and support a multi-criteria decision by de-
fault.

The objective of this paper is the seamless expression of user
preferences in the Semantic Web. We developed and evaluated a
SPARQL extension called ‘PreferenceSPARQL’, which supports
strict partial order preferences natively, as shown in the example.

Example 1 Assume we want to purchase an apartment and we al-
ready have a specific size in mind (e.g., 75 square metres). More im-
portantly is the price, which is deemed affordable (let’s say at most
250 000 Euros). Accordingly, in the listing below a simplified Prefer-
enceSPARQL query is shown expressing our wishes:

prefix : <http://example.com/real-estate/>

select ?sale_offer ?price, ?size
where
{
?sale offer a : sale_offer ;

: price_eur ?price ;
: size_sqm ?size ;

prefer (
?size around 75 prior to
?price lower than 250000)

}

Given the extent of PreferenceSQL, this work limits itself to a sub-
set of preference constructs and algorithms, namely: The major base
and complex preference constructors presented in [14]. Input data
may be partitioned (grouped) along multiple axes, while the pref-
erence selection is to be computed for each partition (group) sepa-
rately. Finally, preference query execution is to be delegated to a var-
ied range of independent preference algorithms: Block-Nested Loop
(BNL), Sort and Limit Skyline algorithm (SaLSa), Linear Elimina-
tion Sort for Skyline (LESS) and Query Rewriting.

2 PreferenceSQL: http://www.preferencesql.com

The rest of the paper is organized as follows: In Section 2 we
discuss some related work. Section 3 describes foundations of pref-
erences and introduces concepts of the Semantic Web, specifically
RDF and SPARQL. We also elaborate on Apache Jena that is used
for our implementation. In Section 4, we derive our new compos-
ite, PreferenceSPARQL, and discuss execution strategies. Section 5
shows the setup and results of our comprehensive experiments. The
experiments present a quantitative comparison between four prefer-
ence algorithms that we chose as execution strategies. In the final
Section 6, we summarize the most important aspects of this paper,
discuss limitations, and give an outlook for further research.

2 Related Work

An early prototype of preferences in the Semantic Web was done by
Siberski et al. [20]. They implemented a preference query formal-
ization of Chomicki [5] into ARQ, the Apache Jena SPARQL en-
gine. They delegated the preference evaluation, which was restricted
to HIGHEST (maximum), LOWEST (minimum), Pareto (equal im-
portant preferences), and Prioritization (more importance), to BNL.
Further limitations of this approach are a lack of notion for regu-
lar Substitutable-Values semantics (cp. [14]), no partitioning values
(without relying on an embedding into the boolean expression) and
the absence of any evaluation. In our PreferenceSPARQL approach
we solved all these drawbacks and in addition, we extended it with
boolean preferences and base preferences as shown in Figure 1.

Pivert et al. [18] published a good theoretical survey on SPARQL
extensions with preferences that are classified into quantitative and
qualitative ones, but they did neither present an implementation nor
experiments. Gueroussova et al. [10] have developed a qualitative
approach that adds a preferring graph pattern and rewrites queries to
SPARQL. It supports multiple atomic constructors and conditional
preferences in the form If E Then P1 Else P2. We use an extension
of their approach as an alternative execution strategy in our evalu-
ation. Patel-Schneider [17] proposed another extension of SPARQL
that can handle simple comparative qualitative preferences.

Preference algorithms have been extensively studied in the con-
text of relational databases and database systems at large. General-
purpose algorithms such as BNL [3], Sort Filter Skyline (SFS) [5],
SaLSa [1], LESS [8, 9] and Scalagon [6] deliver reasonable perfor-
mance for most data sets. These algorithms share in common that
they can process arbitrary data without prior preparation. More spe-
cialized (index-based) algorithms, however, discard this generality
for speed, e.g., [15, 16, 19]. For more details, we refer to [4].

3 Background

3.1 Preferences

Preference queries are grounded in the observation that users eas-
ily describe their desires in sentences akin to ’I like Y more than
X’. It is only natural that the query engine directly derives the best
matches from such preference statements [14]. Formally, we can
write X <P Y , where <P is a strict partial order (SPO). P de-
notes to a preference on a set of attributes A and is defined as
P := (A,<P), where<P ⊆ dom(A)×dom(A). Although it seems
intuitive, modelling preferences is far from a trivial task as the contin-
ued study from a broad spectrum of the academic community shows.

We describe a subset of base and complex constructors developed
by [12, 13] that are the foundation of our preference query model. A
base constructor operates on a single attribute of either categorical or

numerical domain. Figure 1 schematizes the hierarchy of the major
base constructors. Each edge indicates a subsumption relationship.

Figure 1. Taxonomy of base preference constructors.

SCOREd and its sub-constructors are weak order preferences
(WOPs), i.e., a strict partial order and negative transitivity. For
SCOREd a scoring function f : dom(A) → R with a discretiza-
tion factor d ≥ 0 is used. A preference P is called a SCOREd(A, f)
preference, iff ∀x, y ∈ dom(A): x <P y ⇐⇒ fd(x) > fd(y). The
discretization factor d divides continuous values into classes of equal
importance.

BETWEENd, a constructor for the numerical domain stating the
desire for a value between a lower and an upper bound. Within the
threshold f(v) = 0 applies, below f(v) = low − v and above
f(v) = v − up. Other numerical preferences are a specialization
of BETWEENd. For example by setting low = up, we arrive at
AROUNDd(A, z).

Categorical base preferences are sub-constructors of
LAYEREDm. Let m ≥ 0 and L = [L1, . . . , Lm+1] be an ordered
list of m + 1 disjoint sets of dom(A). Then a LAYEREDm(A,L)
preference is a SCORE preference with the subsequent utility
function: f(x) := i− 1 ⇐⇒ x ∈ Li.

Complex constructors combine multiple preferences into a single
preference. For example, a Pareto preference treats two preferences
(P := P1⊗P2) equally, whilst a Prioritization (P := P1&P2) ranks
them in sequential order. Furthermore, there is a numerical ranking
preference RANKF,d that expresses weighted importance between
preferences. For more details we refer to [12, 13, 14].

Preference selection performs intelligent filtering by taking the
quality of the available data and the stated wishes of the user into
account. The result of preference selection is a Best-Matches-Only-
set (BMO-set). In PreferenceSQL the discussed constructors are part
of the PREFERRING clause. Additionally, there is a GROUPING
clause that allows partitioning with an attribute list. P is then evalu-
ated on each partition separately. Lastly, BUT ONLY can be used for
filtering in a similar way to WHERE only that it is used after P was
evaluated.

3.2 Semantic Web and RDF
By consistently employing the Semantic Web standards like RDF and
SPARQL, the web can be transformed into a platform for intelligent
data and information exchange. Unstructured textual information like
HTML will be replaced by context-aware structured information.

The Resource Description Framework (RDF) represents informa-
tion via a set of statements which can be visualized as a labelled,
directed graph. Each RDF statement consists of a triple in the form
〈subject, predicate, object〉, where we can distinguish three differ-
ent types: resources, literals and blank nodes.

A resource is described by a Uniform Resource Identifier (URI)
within a global namespace [24]. Literals encode necessary informa-
tion like numbers, dates and strings. While blank nodes provide a
way of introducing resources without explicitly naming them.

2

The statements can be serialized into a number of formats. Histor-
ically, RDF is associated with XML. Other formats such as Turtle or
JSON-LD have been developed to be more human-readable and less
complicated. We obtain an RDF graph by combining multiple triples
as shown in the next example.

Example 2 Figure 2 shows a small RDF graph describing the chem-
ical element ’Titanium’. Each edge starts at the subject, is labelled
with the predicate and points towards the object. A rectangle is used
for literals and an oval for resources. It is visible that the object of
one triple can be the subject of another triple. It proposes a graph-
structural data model. We obtain an RDF data set by collecting sev-
eral such graphs. The goal of RDF is to connect heterogeneously
structured data from multiple sources [7].

Figure 2. Sample RDF graph of the chemical element Titanium.

The SPARQL Protocol and RDF Query Language (SPARQL) is
used for querying RDF data. It supports entailment regimes for RDF
Schema, Web Ontology Language (OWL), and others. Ontological
information can be used to consider implicit triples during query ex-
ecution.

A SPARQL SELECT query usually starts with prefix and base
statements. These are responsible for declaring URI abbreviations
and defining a base for relative URIs, respectively. A SELECT clause
follows after that and defines a list of variables that is projected.

The WHERE clause defines the query graph pattern. It can con-
tain several basic graph patterns (triples) that can be combined with
conjunctions and disjunctions. Another part of the WHERE clause
is filters that restrict the solution sequence S to those solutions that
satisfy a constraint R, written as S FILTER R.

Similar to SQL, SPARQL also supports grouping via GROUP BY,
sorting via ORDER BY and LIMIT to restrict the result size. There
are even more clauses, but only SELECT and WHERE are manda-
tory (the WHERE keyword may be elided).

3.3 Apache Jena
For our implementation, we have chosen Apache Jena and its
SPARQL query engine ARQ. Apache Jena is a free and open-source
Java framework for building Semantic Web and Linked Data appli-
cations. Due to its modular design and focus on extensibility ARQ
simplifies integration greatly. Jena provides extensive library support
by following published W3C recommendations. Beyond, it includes
a fully-fledged SPARQL processor called ‘ARQ’, a native triple store
called ‘TDB’ and a SPARQL end-point for exposing RDF datasets
called ‘Fuseki’. At its core, Jena stores information as RDF triples.

It provides facilities for importing, exporting, storing, transforming,
querying and publishing information mentioned above. Jena realizes
these varied functionalities through a number of major subsystems,
separated by clearly defined interfaces.

ARQ is a SPARQL 1.1 compliant engine. It supports remote fed-
erated queries, free text search via Lucene and a high degree of cus-
tomization. Furthermore, Jena API is integrated into ARQ and can
be utilized with different storage backends.

Figure 3 illustrates the basic query execution flow. A SPARQL
query submitted by a user is first parsed by the SPARQL grammar. It
generates an Abstract Syntax Tree (AST). Next, the AST is compiled
into SPARQL algebra as described by the SPARQL specification.
ARQ then optimizes the algebra via high-level algebraic transforma-
tions. This includes a rewriting of the algebra into new, equivalent
algebra forms and introducing specialized algebra operators . The al-
gebra is expressed as a SPARQL S-Expression (SSE), a custom syn-
tax for stating SPARQL algebra in a concise format. Subsequently, a
query plan is computed. This query plan is finally executed to get a
solution sequence3.

Figure 3. ARQ Query Execution Flow.

4 PreferenceSPARQL
4.1 Query Language
The goal of PreferenceSPARQL is to incorporate the advances made
with PreferenceSQL into SPARQL. Given the extent of Prefer-
enceSQL, this work has limited itself to a subset of preference
constructs and algorithms. It includes the major base and complex
preference constructors described above. Furthermore, a partitioning
mechanism similar to GROUPING called ‘PARTITION’ has been
realized.

SPARQL is a language for operating on graphs primarily. Thus, in
order to be a first-class citizen of the SPARQL, the extension point
should be a graph pattern as well. The SPARQL Filter is a prime
candidate for imitation. An alternative approach would be the imple-
mentation of a solution modifier. This option, however, comes with
the drawback of needlessly complicating queries with nesting (sub-
queries), if multiple independent preference statements are desired,
e.g., for human readability. Given the preceding rationale, we have
imitated the SPARQL Filter, i.e., the SPARQL grammar has been
extended with a PREFER clause on the following rule:
GraphPatternNotTriples :==
| GroupOrUnionGraphPattern
| OptionalGraphPattern | MinusGraphPattern
| GraphGraphPattern | ServiceGraphPattern
| Filter | Bind | InlineData
| Prefer

In order to define PREFER and PARTITION, let P be a graph
pattern, Pref be an inductively constructed preference and G be a
set of variables. Then P PREFER Pref PARTITION G is a graph
pattern. We write P PREFER Pref as shorthand for partitioning by
an empty set G. PREFER and PARTITION realize PreferenceSQL’s
PREFERRING and GROUPING, respectively. A BUT ONLY can be
emulated via a subsequent FILTER.

3 Apache Jena documentation: https://jena.apache.org/documentation/

3

The set of attributes A is now a set of variables VA. In SPARQL
a solution mapping is a partial function µ : V → T . Consequently,
a variable might be undefined, i.e., have no associated mapping. We
augment the scoring function to consider this case explicitly by treat-
ing undefined variables in a solution mapping as the worst possible
value, i.e., f(x) := ∞ if x is undefined. Given these prerequisites,
the semantics of the prefer graph pattern can now be defined.

Definition 1 (Prefer and Partition) Let Pref = (VA, <P) be a
preference, G be a set of variables and Ω be a solution sequence
of mappings µ : V → T . Then the preference selection operator is
defined as:

σ[Pref](Ω) :=

[µ | µ ∈ Ω ∧ @µ′ ∈ Ω : µ[VA] <Pref µ
′[VA]]

With PARTITION only the best solutions remain in each group

σ[Pref PARTITION G](Ω) :=

[µ | µ ∈ Ω ∧ @µ′ ∈ Ω :µ[G] = µ′[G] ∧ µ[VA] <Pref µ
′[VA]]

Overall, the syntax is closely related to PreferenceSQL, except for
a key alteration w.r.t. categorical preferences. Due to a grammar con-
flict on the keyword IN, a break with prior convention is required.
The new keyword is ONE OF.

For convenience, PreferenceSPARQL supports the us-
age of SPARQL expressions in preferences. For instance,
?x+?y AROUND 0 is a valid preference which is equivalent
to BIND (?x+?y As ?z) . ?z AROUND 0. Caution needs to be
taken when using an expression as a goal value (e.g., low, up, d).
The behaviour will be unpredictable, unless a constant value is used.

Table 1 lists all available base constructors and Table 2 shows the
corresponding grammar.

Table 1. Base Constructors in PreferenceSPARQL.

Preference Constructor SPARQL Equivalent

Betweend(Vx, [low, up]) ?x BETWEEN low, up, d
Aroundd(Vx, z) ?x AROUND z, d
MoreThand(Vx, low) ?x MORE THAN low, d
LessThand(Vx, up) ?x LESS THAN up, d
Highest(Vx) ?x HIGHEST
Lowest(Vx) ?x HIGHEST
Layeredm(Vx, [S1→k,

others, Sk+1→m])
?x LAYERED (S1, ..., others, ..., Sm)

PosPos(Vx, S1, S2) ?x ONE OF S1 ELSE S2

PosNeg(Vx, S1, S2) ?x ONE OF S1 NONE OF S2

Pos(Vx, S) ?x ONE OF S
Neg(Vx, S) ?x NONE OF S
S = {s1, . . . , sn} (s1, . . . , sn)

4.2 Query Execution
Recall the ARQ execution flow and its necessary steps (Figure 3).
The query parser that creates an AST has been extended with the
preference constructors described above. The parser will only recog-
nize preferences if the syntax option is specified as ‘PrefSPARQL’.
ARQ validates the extended AST by generating valid SPARQL syn-
tax and re-parsing the generated output. This requires the implemen-
tation of a corresponding formatter for preferences.

The AST and its elements are then compiled into an algebraic rep-
resentation. The algebra generator uses Pareto to put multiple PRE-
FER clauses inside a single basic graph pattern (BGP). This approach

Table 2. PreferenceSPARQL Grammar.

Prefer := ‘PREFER’ BracketedPrefer PartitionClause?

BracketedPrefer := ‘(’ ParetoPreference ‘)’
PartitionClause := ‘PARTITION’ ‘(’ Var+ ‘)’

ParetoPreference := Prioritization (‘AND’ Prioritization)*
Prioritization := PrefAtom (‘PRIOR’ ‘TO’ PrefAtom)*
PrefAtom := BracketedPrefer | (Expression

(DiscreteAtom | ContinuousAtom))

DiscreteAtom := Layered | Pos | Neg
Layered := “LAYERED” ‘(’ (ListOfSets ‘,’)? ‘others’

(‘,’ ListOfSets)? ‘)’
Pos := ‘ONE’ ‘OF’ Set ((‘ELSE’ Set) | (‘NONE’

‘OF’ Set))?
Neg := ‘NONE’ ‘OF’ Set
ListOfSets := Set (‘,’ Set)*
Set := ‘(’ Expression (‘,’ Expression)* ‘)’

ContinuousAtom := Interval | Around | Highest | Lowest
Interval := ((‘BETWEEN’ Expression ‘,’ Expression)

| (‘MORE’ ‘THAN’ Expression)
| (‘LESS’ ‘THAN’ Expression))
(‘,’ Expression)?

Around := ‘AROUND’ Expression (‘,’ Expression)?
Highest := ‘HIGHEST’
Lowest := ‘LOWEST’

is similar to the behaviour specified by the SPARQL standard for Fil-
ter. ARQ subsequently validates the algebra, i.e., it is transformed to
SSE. A corresponding SSE parser and formatter for preferences have
been realized.

The algebra is thereafter optimized, and a query plan is derived
from the optimized structure. ARQ supports two query engines. A
reference engine is intended for ascertaining correctness, while the
main engine is intended for production deployments. Both engines
have been extended to support preferences.

Execution of a P PREFER Pref PARTITION G graph pattern is
realized by first partitioning the solution sequence of P according to
G. For each partition, the requested preference algorithm is called
separately. The computed solution sequences Ω1, . . . ,Ωn are subse-
quently concatenated (Σn

i=1Ωi) in order to arrive at the final solution
sequence.

4.3 Preference Algorithms

In this section we present some preference algorithms which we
modified and adapted for our PreferenceSPARQL experiments.

BNL was first presented by Börzsönyi et al. [3] and is an improve-
ment of the nested-loop algorithm. Instead of comparing every tuple
with each other, it reduces the number of comparisons by only con-
sidering tuples within a buffer (window) and immediately discard-
ing dominated tuples. Since no assumption about the preference or
the data is made, the algorithm is easy to implement. We use an in-
memory variant (BNL-M) and an external variant (BNL-E) that is
bounded by a certain window size. A major drawback of BNL in its
current incarnation is the need to evaluate all expressions and their
associated scoring functions repeatedly. When comparing p <Pref q
followed by p <Pref w, it would be desirable to re-use at least some
intermediary scoring results of p. Partially caching fd, in general,
might lead to significant performance improvements. However, the
implementation of such a caching strategy is not trivial due to the
presence of Pareto and Prioritization, which obfuscate the underly-
ing utility functions.

4

LESS is based on Sort Filter Skyline (SFS) that modifies BNL by
first sorting the input according to a monotone function F . SFS’s ap-
proach greatly simplifies window management since an unread tuple
p cannot dominate a tuple q that has already been placed within the
window S (due to F(q) ≥ F(p)) [1]. If F is suitably chosen, then
preferences can be computed without comparing all tuples. LESS
makes two refinements. Firstly, it adds an elimination-filter (EF) win-
dow at the beginning of the sorting phase, designed to reduce tuples
early. Secondly, the final pass of the sort is combined with the first
skyline-filter (SF) pass.

SaLSa is also based on SFS and was first introduced by Bartolini
et al. [1]. It further exploits the benefits of topological sorting by
using a stopping point. This point guarantees that unread tuples are
dominated by already seen tuples and can, therefore, be discarded.

The last approach is Query Rewriting. It transforms PreferenceS-
PARQL into plain SPARQL queries during the high-level optimiza-
tion phase of ARQ. Modifications during the execution phase are not
necessary. Subsequently, a rewritten query can be sent to any regular
SPARQL engine accessible on the Web.

5 Experiments

The primary goal of the experiments is to evaluate the preference
algorithms for PreferenceSPARQL. However, the evaluation is con-
strained towards a quantitative approach, i.e., a qualitative evaluation
does not take place. Furthermore, we use PreferenceSQL as a refer-
ence to better assess the practicability of our implementation.

5.1 Data Set

Preferences are especially useful in the domain of real estate pur-
chases and sales. Enriching a carefully curated data set with fac-
tual information from outside sources offers multiple benefits to the
customer experience. For instance, information regarding the near-
est city or the neighbourhood could be included. Since e-commerce
data is commonly not publicly available, we decided to generate a
synthetic data set derived from real-world facts.

The data set is scalable and comes in two distinct representations.
One uses RDF triple data that is intended for our PreferenceSPARQL
client. The other one is for PreferenceSQL in the form of a relational
data model. The relational data model consists of 9 coherent tables.
One table, e.g., describes an agent who is responsible for a collection
of sale offers. Correspondingly, the listing below shows some sample
RDF triples. Other tables have information about the property, loca-
tion, usage type of the land or internet availability. The general struc-
ture of the test suite is inspired by the well-known Berlin SPARQL
Benchmark [2].

<uri/agent/12> a <uri/agent>;
<uri/company_name> "Quast Immo GmbH";
<uri/first_name> "Orlando";
<uri/last_name> "Asmus" .

<uri/sale_offer/5> <uri/agent>
<uri/agent/12> .

<uri/sale_offer/34> <uri/agent>
<uri/agent/12> .

<uri/sale_offer/5> a <uri/sale_offer>;
<uri/commission> 7.14E0;
<uri/price_eur> 5988456 .

(...)

5.2 Test Queries
We came up with 20 queries that reflect the differences in prefer-
ence usage as appropriate for each use case. Table 3 in Appendix A
describes all queries and contains a rough estimation of the complex-
ity. Due to limited space, we selected three queries out of the 20 to
illustrate our results. The test queries reflect different performance
profiles. All queries are parameterized (@parameter@), in order to
prevent caching.

We use Query 5 (cp. Table 3) as an example that we explain in de-
tail. An investor could use this query to look for properties that have
a stable renter base, i.e., renters who pay on time. Equally important
might be that the rental conditions compare favourably to market,
i.e., the net rental return is higher than average. In order to retrieve
all the necessary information, we need to join three tables in Pref-
erenceSQL. The preferring clause consists of two base constructors
(MORE THAN, LAYERED) and one complex constructor (AND) to
combine them. Therefore, the dimension in Table 3 was set to 2.
select (..)
from sale_offer s, property p, contract c
where p.id = s.property_id and c.id = p.contract_id
preferring c.net_rental_return more than @net@

and c.payment_behavior
layered((’Punctual’), (’Unknown’), others));

Below we show the corresponding PreferenceSPARQL query. The
query is more verbose, but the prefer clause is very similar to the
clause in PreferenceSQL.
prefix: <http://example.com/real-estate/>
prefix xsd: (..)

select ?sale_offer ?price_eur (..)
where {
?sale_offer a :sale_offer ;

:price_eur ?price_eur ;
:commission ?commission ;
:property ?property .

?property :contract ?contract .
?contract :net_rental_return ?net_ren(..) ;

:payment_behavior ?payment_(..) .
prefer(?net_rental_return more than @net@

and ?payment_behavior
layered ((’Punctual’), (’Unknown’), others))

}

5.3 Experimental Setting
All experiments have been conducted on a standard PC (Intel i7-
4770K 3.9 GHz CPU, 16 GB RAM, Windows 7 x64). The JVM has
been assigned 10 GB RAM (-d64 -Xms10G-Xmx10G). The backend
database for PreferenceSQL is PostgreSQL 9.4, which has been de-
ployed to the same computer with factory defaults. The PreferenceS-
PARQL implementation is built upon Apache Jena 3.7.0 with default
settings. The spill factor is set to 100000 for externalized BNL.

We utilize TDB2 as our native triple store. Memory is bounded
towards JVM-assigned RAM. Hence, performance estimates are op-
timistic. For a fair comparison to PreferenceSQL, TDB would have
to be limited to the same amount of memory.

A test driver dispatches preference queries to the intended recip-
ient and collects benchmark metrics for further processing. Each
query stream repeatedly executes a random permutation of the test
queries with uniformly distributed parameters. Once execution con-
cludes, measurements are aggregated in a corresponding data struc-
ture. A certain number of warm-up runs are discarded. All our perfor-
mance metrics have been derived from execution time. Specifically,
we measure the following key indicators:

5

• Query Execution Time (QET) which denotes the time required to
serve a query request (from dispatch till the reception of all solu-
tions).

• Aggregated Execution Time (AET) which indicates the run time of
all 20 individual queries by summation of their QET. Downtime
spent by the test driver to prepare the next query is not measured.

• Thread Execution Time (TET) is the sum of all AETs of an algo-
rithm for one query stream.

For statistical robustness, we use box-and-whisker diagrams.
QETs and AETs are broken down according to lower quartile, me-
dian and upper quartile as indicated by the box. Outliers are depicted
by individual points.

5.4 Results
Query Execution Time by Algorithm (QET) Figure 4 shows the
query execution time of all algorithms. At the top is Query Rewrit-
ing (including query translation time), then LESS, SaLSa, the exter-
nalized version of BNL (BNL-E), the in-memory version of BNL
(BNL-M) and finally PreferenceSQL.

Figure 4. Algorithm comparison by single queries (100 agents, 5
iterations, single client)

The data set refers to 100 agents that correspond to 297 834 RDF
triples. Query 5 was already discussed above and has low complexity.
The other two have high complexity. Query 9 uses multiple Pareto
preferences and Query 12 four Prioritizations and a nested quaternary
Pareto preference (cp. Table 3).

It is apparent that the performance of Query Rewriting is subpar.
ARQ is not optimized for complex filter expressions. Hence, Query
Rewriting should only be employed if no other algorithm can be
used, e.g., due to a proprietary SPARQL engine.

The performance of PreferenceSQL is mixed. On the one hand, it
closely mirrors all native preference algorithms (Query 12). On the
other hand, some queries are exceedingly slow (Query 5, Query 9).
Multiple factors probably cause a performance bottleneck. For once,
the PreferenceSQL settings are very conservative in comparison to
the ARQ implementation, which tries to keep the whole solution se-
quence in memory if feasible. Furthermore, the middleware architec-
ture inherently limits PreferenceSQL when a preference is applied
to the whole data set without any further restrictions. Fetching the
whole data set from the database incurs a non-negligible overhead
which cannot be adequately compensated by better preference algo-
rithms and cost-estimation.

Figure 5 focuses only on native preference algorithms. The data
set was scaled up to 5 000 agents or 14 700 102 RDF triples. The
performance of in-memory BNL is solid, mostly outperforming its
externalized variant in simple queries (Query 5). In some circum-
stances, BNL is significantly slower than other preference algo-
rithms, e.g. in Query 9, with multiple Pareto preferences. Choosing
the correct window size is difficult, though, due to observed perfor-
mance reductions with overly large window sizes.

Figure 5. Algorithm comparison by single queries (5000 agents, 50
iterations, single client)

Across all queries, LESS leads in terms of execution time, but the
expected performance gain over BNL is absent. The spread in exe-
cution time for most queries is very apparent. SaLSa appears to suf-
fer from the different choices made w.r.t. evaluation of the tuples on
larger data sets (Query 10, 14, 16). Replacing the evaluation code
with the one used for LESS might increase performance in SaLSa’s

6

favour. Notably, LESS and SaLSa produce quite a lot of outliers. We
presume this is due to the memory limitation of 10 GB, repeatedly
triggering garbage collection.

Aggregated Execution Time by Algorithm (AET) Figure 6 ag-
gregates the QETs for all test queries. For 100 agents, the distribu-
tion of the AETs affirms our prior judgment that Query Rewriting
is not suitable for larger workloads. The previously discussed non-
performing queries skew the AET for PreferenceSQL. The AET for
the well-performing query subset of PreferenceSQL is approximately
equivalent to the native PreferenceSPARQL algorithms. For 5 000
agents, in-memory BNL outperforms its externalized cousin. SaLSa
is roughly equivalent to in-memory BNL by median but gives rise
to lots of outliers in both directions. Finally, LESS outperforms ev-
eryone else by the median, but just like SaLSa suffers from a large
spread in execution times.

Figure 6. Algorithm comparison by aggregated execution time (Top: 100
agents, 5 iterations. Bottom: 5000 agents, 50 iterations.)

Thread Execution Time by Algorithm (TET) The evaluated
data set sizes range from 100 to 5 000 liaisons that are 97 834 to
14 700 102 triples, respectively. Figure 7 shows the overall run time
of the native PreferenceSPARQL algorithms across these data set
sizes. From 100 to 1000 agents, the performance of LESS is excel-
lent. SaLSa is closely behind LESS. Externalized BNL is the slowest
method, but not far behind its in-memory counterpart. The gap be-
tween in-memory LESS and BNL rapidly closes as the size of the
data set further increases. With 500 agents LESS only spends 58.63
% of BNL-M’s run time. With 5 000 agents LESS already requires
97.19 %. Given the memory usage pattern observed during the eval-
uation, ARQ appears to run into the 10 GB memory limit. With a
machine that has more memory, LESS should lead significantly in
performance. An externalization for LESS and SaLSa should allevi-
ate this problem in general.

6 Summary and Conclusion
After introducing the Semantic Web in general and SPARQL in par-
ticular, we have presented the concept of preferences as personal-
ized wishes. We have adopted the formalization by Kießling et al.,
modelling such preferences as strict partial orders via an inductive

Figure 7. Algorithm comparison by overall run time across various data
set sizes (50 iterations, single client)

constructor-based technique. Inspired by PreferenceSQL, we have
defined a replica for SPARQL called PreferenceSPARQL. Given
the extent of PreferenceSQL, our current realization has been con-
strained towards the major base and complex constructors. In terms
of execution strategies, we presently support BNL, SaLSa, LESS and
Query Rewriting for preference selection. Finally, we contribute a
benchmark suite built with preferences in mind. Situated in the do-
main of real estate purchases and sales, the Real Estate Benchmark
allows for the evaluation of SQL and SPARQL preference queries
upon a dataset derived from real-world facts.

Our evaluation shows that overall, the in-memory LESS imple-
mentation leads in terms of execution time, but the expected perfor-
mance gain over BNL is absent. SaLSa and LESS produce many out-
liers on larger data sets that might be caused by memory limitations.
Query Rewriting has the worst performance. ARQ is not optimized to
handle complex filter expressions. Lastly, we compared PreferenceS-
PARQL and an externalized implementation of PreferenceSQL. The
results show that PreferenceSPARQL is superior to PreferenceSQL,
but the comparison is skewed. PreferenceSQL should be re-evaluated
with in-memory settings to get fair results. An evaluation of the qual-
itative aspect is considered future work.

A problem is that most of the Semantic Web currently consists of
descriptive repositories of facts. Governments and scientific institu-
tions have begun to release their data sets to the public and crowd-
sourced efforts like DBpedia have extracted structured information
from the Wikipedia project. In the future, job-searching might be a
promising domain for PreferenceSPARQL. Since Google launched
its job search engine, more and more companies and job platforms
provide structured data for their job offers.

Regarding PreferenceSPARQL much remains to be done. Firstly,
the remaining base and complex constructors defined by Prefer-
enceSQL should be implemented. Secondly, more sophisticated eval-
uation strategies could be developed, either by realizing new algo-
rithms from the literature (e.g., index-based) or by optimizing exist-
ing binding evaluation. Furthermore, the consideration of ontological
knowledge or the formulation of preferences on the actual structure
of the RDF graph might speed up preference evaluation significantly.

7

REFERENCES
[1] I. Bartolini, P. Ciaccia, and M. Patella, ‘SaLSa: Computing the Skyline

Without Scanning the Whole Sky’, in Proceedings of CIKM ’06, pp.
405–414. ACM, (2006).

[2] C. Bizer and A. Schultz. Berlin SPARQL Benchmark
(BSBM) Specification - V3.1. http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/, 2011.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker, ‘The Skyline Operator’, in
Proceedings of ICDE ’01, pp. 421–430. IEEE, (2001).

[4] J. Chomicki, P. Ciaccia, and N. Meneghetti, ‘Skyline Queries, Front and
Back’, ACM SIGMOD Record, 42(3), 6–18, (2013).

[5] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, ‘Skyline with Presort-
ing’, in Proceedings of ICDE ’03, pp. 717–816. IEEE, (2003).

[6] M. Endres, P. Roocks, and W. Kießling, ‘Scalagon: An Efficient Sky-
line Algorithm for all Seasons’, in Proceedings of DASFAA ’15, eds.,
M. Renz et al., pp. 292–308. Springer International, (2015).

[7] B. Glimm, ‘Using SPARQL with RDFS and OWL Entailment’, in
Reasoning Web. Semantic Technologies for the Web of Data, eds.,
A. Polleres et al., 137–201, Springer Berlin Heidelberg, (2011).

[8] P. Godfrey, R. Shipley, and J. Gryz, ‘Maximal Vector Computation in
Large Data Sets’, in Proceedings of VLDB ’05, pp. 229–240. VLDB
Endowment, (2005).

[9] P. Godfrey, R. Shipley, and J. Gryz, ‘Algorithms and Analyses for Max-
imal Vector Computation’, The VLDB Journal, 16, 5–28, (2007).

[10] M. Gueroussova, A. Polleres, and S.A. McIlraith, ‘SPARQL with Qual-
itative and Quantitative Preferences’, in Proceedings of OrdRing ’13,
pp. 2–8, Aachen, Germany, (2013). CEUR-WS.org.

[11] A. Hadjali, S. Kaci, and H. Prade, ‘Database Preference Queries - A
Possibilistic Logic Approach with Symbolic Priorities’, in Foundations
of Information and Knowledge Systems, eds., S. Hartmann and G. Kern-
Isberner, volume 63, pp. 291–310. Springer Berlin Heidelberg, (2008).

[12] W. Kießling, ‘Foundations of Preferences in Database Systems’, in Pro-
cedings of VLDB ’02, pp. 311–322. VLDB Endowment, (2002).

[13] W. Kießling, ‘Preference Queries with SV-Semantics’, in COMAD ’05:
Advances in Data Management 2005, Proceedings of the 11th Interna-
tional Conference on Management of Data, eds., Jayant R. Haritsa and
T. M. Vijayaraman, pp. 15–26, Goa, India, (2005). Computer Society
of India.

[14] W. Kießling, M. Endres, and F. Wenzel, ‘The Preference SQL System -
An Overview’, Bulletin of the Technical Commitee on Data Engineer-
ing, IEEE Computer Society, 34(2), 11–18, (2011).

[15] D. Kossmann, F. Ramsak, and S. Rost, ‘Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries’, in Proceedings of VLDB ’02,
pp. 275–286. VLDB Endowment, (2002).

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘An Optimal and Progressive
Algorithm for Skyline Queries’, in Proceedings of SIGMOD ’03, pp.
467–478. ACM, (2003).

[17] P. F. Patel-Schneider, A. Polleres, and D. Martin, ‘Comparative Pref-
erences in SPARQL’, in 21st International Conference on Knowledge
Engineering and Knowledge Management (EKAW), volume 11313 of
Lecture Notes in Computer Science, pp. 289–305. Springer, (2018).

[18] O. Pivert, O. Slama, and V. Thion, ‘SPARQL Extensions with Prefer-
ences: A Survey’, in Proceedings of SAC ’16, pp. 1015–1020. ACM,
(2016).

[19] J. Selke and W.T. Balke, ‘SkyMap: A Trie-Based Index Structure for
High-Performance Skyline Query Processing’, in Database and Expert
Systems Applications, eds., A. Hameurlain et al., pp. 350–365. Springer
Berlin Heidelberg, (2011).

[20] W. Siberski, J.Z. Pan, and U. Thaden, ‘Querying the Semantic Web with
Preferences’, in The Semantic Web - ISWC 2006, eds., I. Cruz et al., pp.
612–624. Springer Berlin Heidelberg, (2006).

[21] H. Stuckenschmidt, F. Harmelen, W. Siberski, and S. Staab, ‘Peer-to-
Peer and Semantic Web’, in Semantic Web and Peer-to-Peer: Decen-
tralized Management and Exchange of Knowledge and Information,
eds., S. Staab and H. Stuckenschmidt, 1–17, Springer Berlin Heidel-
berg, (2006).

[22] R. Studer, A. Abecker, and S. Grimm, ‘Introduction’, in Semantic Web
Services: Concepts, Technologies, and Applications, 1–11, Springer
Berlin Heidelberg, (2007).

[23] M. Workman, ‘Introduction’, in Semantic Web: Implications for Tech-
nologies and Business Practices, Springer International, (2016).

[24] L. Yu, ‘The Building Block for the Semantic Web: RDF’, in A Devel-
oper’s Guide to the Semantic Web, 23–95, Springer Berlin Heidelberg,
(2014).

A Test Queries

Table 3. Queries with dimensions and short descriptions. The
dimensionality roughly indicates the complexity of the preference, e.g., ’2/4’

denotes a binary Pareto prioritized over a quaternary Pareto.
Query Dimensions Preference

01 2 Lots with the lowest price and enough space for the
construction of a single-family house.

02 3 Properties with highest guide value, most residential
units and most recently modernized.

03 2/4 Properties with certain target size and a certain num-
ber of residential units. Less importantly, the price, en-
ergy consumption and two other categorical character-
istics.

04 1 Lots around a specific area.
05 2 Properties with an above-average net return and punc-

tual rental payments.
06 2/2 Properties with a certain size and amount of residential

units. Less importantly, price and the year of the last
modernization.

07 3 Agricultural land with three specific numerical char-
acteristics.

08 4 Properties with specific categorical characteristics re-
garding the construction.

09 14 Properties with eight specific categorical and six nu-
merical characteristics regarding general facts.

10 4/2 Properties with four specific characteristics regarding
the neighbourhood. Less importantly, are two specific
numerical characteristics.

11 5/1 Agents with four specific sale characteristics before
the lowest possible commission.

12 1/1/4/1 Municipalities with a range of different and equally
important numerical characteristics.

13 2 Municipalities with a low photovoltaics adoption rate
and high yearly returns per square meter.

14 1/7/1 Properties built before 1970. Less importantly, seven
specific characteristics regarding the interior and, least
importantly, the number of amenities.

15 1/3 Warehouses that exceed a certain capacity before three
specific numerical preferences.

16 6 Properties with six characteristics that are similar to
another property’s characteristics.

17 2 partition 2 Lots with the highest internet upload and download
rate for each municipality and internet type.

18 3/2 Properties with three certain electrical requirements.
Less importantly, the construction year and the condi-
tion of the building.

19 1/1/1/1/1 Properties with five specific characteristics that have
all different importance.

20 1 partition 1 Sale offers with a certain price compared to their mar-
ket value grouped by the municipality.

Query 12

1 select m.*
2 from query12 rent markets m
3 preferring m.sale count more than 15 prior to m.net

return avg more than 0.03 prior to
4 (m.sale count highest and m.lot gv avg highest and m

.property gv avg highest and m.unit avg highest)
prior to

5 m.net return avg highest;

8

