The Preference SQL JDBC Driver

Markus Endres

endres@informatik.uni-augsburg.de

July 2, 2012

This is a short introduction how to use the Preference SQL JDBC Driver to evaluate
preference queries on your own database.

1 Preference SQL

Preference SQL [HKO05] extends the SELECT statement of SQL by an optional PREFER-
RING clause. This PREFERRING clause selects all interesting tuples, i.e., tuples that are
not dominated by other tuples. Preference SQL currently supports most of the SQL92
standard as well as all base preferences together with the constructors for Pareto, Pri-
oritization and Rank preferences as listed in [Kie02, Kie05].

A Preference SQL query block has the following schematic design:

SELECT ... <selection>

FROM ... <table_reference>

WHERE ... <hard_conditions>
PREFERRING ... <soft_conditions>
GROUPING ... <attribute_list>
BUT ONLY ... <but_only_condition>
TOP ... <number>

GROUP BY ... <attribute_list>

HAVING ... <hard_conditions>

ORDER BY ... <attribute_list>

LIMIT ... <number>

Table 1: Preference SQL query block.

1 Preference SQL

A preference is evaluated in the PREFERRING clause on the result of the hard constraint
stated in the WHERE clause. Empty result sets can only occur in cases where all tuples
have been filtered out by the hard conditions.

The syntax of the preference extensions is straightforward, cp. Table

’ Preference constructor

Preference SQL expression

BETWEEN,(A,low, up) A BETWEEN low AND up, d REGULAR
AROUNDy (A, 2) A AROUND z, d REGULAR
HIGHEST,(A) A HIGHEST sup, d REGULAR
LOWEST,(A) A LOWEST inf, d REGULAR
LAYERED,,(A,L1,...,Lmt1) A LAYERED (Li, ..., L,41) REGULAR
POS/POS(A,Sy,52) A IN S; ELSE S; REGULAR
POS(A,S) A IN S REGULAR

POS/NEG(A, Sy, 52) A IN S; NOT IN S REGULAR
NEG(A,S) A NOT IN S REGULAR
ANTICHAIN(A) A ANTICHAIN REGULAR
PARETO(Py,...,P,) P, AND ... AND P,
PRIORITIZATION(P,...,Py,) | PL PRIOR TO ... PRIOR TO P,
BY&P P GROUPING B

Table 2: Preference SQL Syntax

Note that base preferences with trivial SV-semantics can be expressed by omitting
the keyword REGULAR at the end of their definition, cp. [Kie05]. The sets needed for
a LAYERED,, preference and its sub-constructors (POS, NEG, etc.) are entered as
comma-separated values in brackets: (*a’, ’b’, ’c’, ..., ’z’).

More information on Preference SQL can be found in [Kie02) Kie05, HKO05, KEWT1]
and in the www:

e Preference SQL in general:
http://ursaminor.informatik.uni-augsburg.de/trac/wiki/PSQL
e Preference SQL syntax with many examples:

http://ursaminor.informatik.uni-augsburg.de/trac/wiki/Preference’20SQL

http://ursaminor.informatik.uni-augsburg.de/trac/wiki/PSQL
http://ursaminor.informatik.uni-augsburg.de/trac/wiki/Preference%20SQL

2 The Preference SQL JDBC Driver

2 The Preference SQL JDBC Driver

JDBC (Java Database Connectivity) is an API for the Java programming language
that defines how a client may access a database. It provides methods for querying and
updating data in a database. JDBC is oriented towards relational databases.

Preference SQL is implemented in Java 1.6 and works on the top of a database. Figure
shows the architecture of our Preference SQL JDBC driver and the communication
between client and server.

Connection String 1: Connection String 2:
gemini.informatik.uni-augsburg.de <jdbc-database-url>
Client
RMI-Server DB-Server
Java RMI
PSQL JDBC Server
CCCCECCKCK ‘
Qe e«
\ 4
JDBC

SQL Client using Preference SQL Framework I g -
™ ”

PSQL JDBC Driver

SQL - Datenbank

Figure 1: Preference SQL JDBC Driver — Server architecture.

Connection String 1 defines the RMI Server, i.e. the counterpart of our Preference
SQL JDBC Client psqlClient. jar. The Preference SQL JDBC Server communicates
with our Preference SQL Framework for preference evaluation. Furthermore, Connec—
tion String 2 defines the underlying database URL. This database can be at any place
in the world. Keep this schema in mind when specifying the URL for the JDBC driver
later.

3 Using Preference SQL in a SQL Client

This section describes how to use the Preference SQL JDBC driver in combination with
any JDBC SQL Client. Note that you need Sun Java 1.6 and the SQL Client must
support Java 1.6.

3.1 General Approach

1) Register the Preference SQL JDBC Driver (psqlClient.jar) in your SQL Client.

2) Create a database connection with the following connection parameters:

3 Using Preference SQL in a SQL Client

e URL:
jdbc:psql://gemini.informatik.uni-augsburg.de®
<jdbc-database-driver>::<jdbc-database-url>

e Driver class:
psql.connector.client.PSQLDriver

3.2 DbVisualizer and Preference SQL JDBC

We will demonstrate the registration of the driver and the connection to a database
using the DbVisualizer SQL Client from http://www.dbvis.com/} You can download
the free version of DbVisualizer at

http://www.dbvis.com/products/dbvis/download/

1) Install and run DbVisualizer. When the Connection Wizard appears, click Cancel.

2) Register the Preference SQL JDBC Driver (psqlClient.jar).

2)

b)

In the menu of DbVisualizer click Tools -> Driver Manager...

In the menu of DbVisualizer click Driver -> Create Driver. The window for
JDBC driver registration appears.

In the User Specified tab of the Driver File Paths section navigate to the
Preference SQL JDBC driver psqlClient. jar by clicking the Open icon.

Fill the remaining fields with the following data, also cp. Figure Close the
window.

Name: Preference SQL (or whatever you want)
URL Format: jdbc:psql://gemini.informatik.uni-augsburg.de@
<jdbc-database-driver>::<jdbc-database-url>
Driver Class: psql.connector.client.PSQLDriver
(automatically set after the import of psqlClient.jar)

http://www.dbvis.com/
http://www.dbvis.com/products/dbvis/download/

3 Using Preference SQL in a SQL Client

Driver Settings

Name: PSQL

URL Format: jdbc:psql://gemini.informatik.uni-augsburg.de@<jdbc-database-driver>::<jdbc-database-url>

>

Driver Class: ‘_ iP psqgl.connector.client.PSQLDriver

Driver Version: 1.0
i® - JDBC Driver & - JNDI Lookup

Driver File Paths

User Specified System Classpath !

) /Users/endresma/Desktop/psqljdbcdriver/PSQLIDBCDriver/psqlClient.jar)
i psql.connector.client.PSQLDriver -

Figure 2: Preference SQL JDBC Driver registration in DbVisualizer.

3) Create a database connection.

a) Right-click Connections -> Create Database Connection. Don’t use the wiz-
ard. The new Database Connection window appears.

b) Fill the fields as depicted in Figure |3| and connect to the database.

Alias: Preference SQL (or whatever you want)

Database Type : Generic

Driver (JDBC): Preference SQL

Database URL: e.g.
jdbc:psql://gemini.informatik.uni-augsburg.de@
org.postgresql.Driver::jdbc:postgresql: //
localhost:5432/psqldb
(if you want to connect to our sample database)

Userid: psqldbuser
(if you want to connect to our sample database)
Password: psqldbpwd

(if you want to connect to our sample database)

3 Using Preference SQL in a SQL Client

Connection

Alias: PSQL

Database Type: | Generic DK
Driver JDBC): | €2 PSQL6 DR Y]
Database URL: jdbc:psql://gemini.informatik.uni-augsburg.de@org.postgresql.Driver:jdbc:postgresql://localhost:5432/psqldb 2 g -

URL Format:jdbc:psql:

emini.informatik.uni-augsburg.de@<jdbc-datbase-driver>::<jdbc-url>.

Authentication

Userid: psqldbuser

Password: ~ FEEeeee

_ Connect

Figure 3: Create a database connection in DbVisualizer.
3.3 Sample Database

Our sample database holds a relation Cars, which contains cars with different attributes.
Figure [4] shows the schema. Just query SELECT * FROM Car to get a more detailed
overview of the table’s content. Note that the table is read-only.

CARS

£ b NUMBER(38)
NAME VARCHAR2(40)
MAKE VARCHAR2(40)
COLOR VARCHAR2(40)
PRICE NUMBER
AGE NUMBER(38)
HORSEPOWER NUMBER(38)
FUEL NUMBER

Figure 4: Sample database relation.

As an example one may prefer VW or Audiﬂ The Horsepower should be between 50 and
80, but a difference of 10 does not matter. Both are more important than Age around 5
years. A Price less than 5.000 Euro is a hard constraint. In Preference SQL we write:

SELECT * FROM Car

WHERE PRICE < 5000

PREFERRING MAKE IN ('vw', 'audi') REGULAR AND
Horsepower BETWEEN 50 AND 80, 10 REGULAR PRIOR TO
Age AROUND 5;

Type it u}ﬂ in the DbVisualizer and be surprised by the result.

!Note that our preference constructors are case-sensitive and our relation only contains lower-case.
2Do not copy & paste due to the wrong selection of quotes in a PDF document.

4 Future Work

4 Future Work

Although Preference SQL supports all kind of preference queries and the most part of
SQLI2, there are still some open issues. For example, (correlated) subqueries or create
user do not work until now. Furthermore, only Oracle, PostgreSQL and My-SQL are
supported. We work on further databases, e.g. Microsoft SQL Server or SQLite.

Of course, Preference SQL is not bug free. Therefore, if you determine a bug, or you
think there is a bug, contact

bugs@PreferenceSQL.com

References

[HKO5]

[KEW11]

[Kie02]

[Kie05]

B. Hafenrichter and W. Kieflling, Optimization of Relational Preference
Queries, ADC ’05: Proceedings of the 16th Australasian database conference
(Darlinghurst, Australia), Australian Computer Society, Inc., 2005, pp. 175—
184.

W. KieBlling, M. Endres, and F. Wenzel, The Preference SQL System - An
Overview, Bulletin of the Technical Commitee on Data Engineering, IEEE
Computer Society 34 (2011), no. 2, 11-18.

W. Kielling, Foundations of Preferences in Database Systems, VLDB ’02:
Proceedings of the 28th International Conference on Very Large Data Bases
(Hong Kong, China), VLDB Endowment, 2002, pp. 311-322.

, Preference Queries with SV-Semantics, COMAD ’05: Advances in
Data Management 2005, Proceedings of the 11th International Conference on
Management of Data (Goa, India) (Jayant R. Haritsa and T. M. Vijayaraman,
eds.), Computer Society of India, 2005, pp. 15-26.

mailto:bugs@PreferenceSQL.com

	Preference SQL
	The Preference SQL JDBC Driver
	Using Preference SQL in a SQL Client
	General Approach
	DbVisualizer and Preference SQL JDBC
	Sample Database

	Future Work

